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Abstract

This document provides supplementary material to the article “Fiber Direction Estimation,

Smoothing and Tracking in Diffusion MRI” written by the same authors.

S1 Practical maximum likelihood estimation for model (2)

In an attempt to find the global maximizer of the likelihood (3), we develop an efficient algorithm

through an approximation of model (2). This algorithm essentially performs a grid search, but it

makes use of the geometry of the problem so it is fast. It includes three major steps: (i) lay down a

grid for (αj ,m
⊺
j )’s, (ii) evaluate the maximized likelihood function w.r.t. τj ’s on the grid, and (iii)

return the grid point that maximizes the likelihood function. One can then use this returned grid

point as a starting value in a gradient method for obtaining ML estimation of model (2). Such a

strategy results in better numerical stability and accuracy in finding ML estimates.

S1.1 An approximation of model (2)

Let cj = (αj ,m
⊺
j )

⊺, c = (c⊺1, . . . , c
⊺
J)

⊺ and Cj be the set of grid points for cj . For simplicity, we

take the same set of grid points, C, for all j. To lay down a grid for mj ’s, we apply the sphere

tessellation using Icosahedron, which is depicted in Figure S1. The tessellation algorithm starts
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with Icosahedron (a regular polyhedron with 20 triangular faces); and then repeatedly divide each

triangular face into four smaller triangles and rescale the newly formed vertices. Here, we only

pick unique vertices up to a sign for the formation of the grid. In our implementation, we utilize

randomly rotated versions of the tessellation with two subdivisions, which results in a grid with

321 directions corresponding to those unique vertices (up to a sign change) in Figure S1 (Right).

If c ∈
∏J

j=1 Cj = CJ , model (2) can be rewritten as

S̄(u) =
K∑
k=1

β̃kx(u, m̃k, α̃k), (S1)

where K = |C|, x(u, m̃k, α̃k) = S0 exp{−bα̃k(u
⊺m̃k)

2}, (α̃k, m̃k) ∈ C and β̃k ∈ [0, 1). One may

notice that, in this reformulation, the non-zero β̃k’s are τj ’s in model (2). If c ̸∈ CJ , i.e. the set of

parameters is not a grid point, then equation (S1) serves as an approximation to S̄(u) in model (2)

as long as the grid is dense enough in the parameter space.

Furthermore, under the commonly used scales of b-values and tensors, x(u, m̃k, α̃k) and x(u, m̃k′ , α̃k′)

are highly correlated if m̃k = m̃k′ . Thus, x(u, m̃k, α̃k) is proportional to x(u, m̃k, α̃
′
k) approxi-

mately. Note that the proportional constant can be combined with β̃k to form a new coefficient in

linear model (S1). Inspired by this observation, we reduce the grid size by setting α̃k = α̃ for all

k to a common value α̃ and using new coefficients βk’s to take care of the proportional constants

due to the discrepancy between αj ’s and α̃. From our experience, we set α̃ = 2/b. With all these

approximations, we consider fitting the following model:

S̄(u) =
K∑
k=1

βkxk(u), (S2)

where xk(u) = x(u, m̃k, α̃) and βk ≥ 0. For our purpose, we want to identify non-zero βk’s because

those m̃k’s associated with non-zero β̂k’s can be regarded as selected diffusion directions. Note that

model (S2) converts the expensive grid search to an estimation problem of a linear model (with

respect to βk’s) with non-negative constraints. A fast algorithm for fitting this model with Rician

noise assumption is given in Section S1.3 below. As it turns out, the non-negativity constraints

often result in a sparse estimate of β = (β1, . . . , βK)⊺; i.e., only a subset of directions is selected.

In particular, if the estimate of the unconstrained problem (i.e., βk’s are allowed to be negative)

is not located in the first quadrant of the parameter space, the corresponding constrained solution

will be sparse.

Even though the solution is often sparse, the number of selected directions is usually larger than
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J , the true number of tensor components. This is partly due to colinearity of xk(u)’s resulting from

the use of a dense grid on the directions m̃k’s.

In below we propose to first divide the selected directions into I groups and then generate stable

estimates ofmj ’s via gradient methods (Section S1.2). Finally, Bayesian information criterion (BIC)

(Schwarz, 1978) is used to choose an appropriate I as the estimate for J (Section 3.3 of the main

article).

Figure S1: Sphere tessellations through triangulation using Icosahedron with level of subdivisions:

1 (Left), 2 (Middle) and 3 (Right).

S1.2 Clustering of the selected directions

Write the above ML estimate of βk as β̂k for k = 1, . . . ,K. Suppose there are L > 0 non-zero β̂k’s,

without loss of generality, k = 1, . . . , L. Thus, m̃1, . . . , m̃L are the selected directions. Now, we

develop a strategy to cluster the selected directions into I groups, for a set of I ∈ {1, . . . , L}. To

perform clustering, we require a metric measure on the space of directionsM. A natural metric is

d∗(u,v) = arccos(|u⊺v|), (S3)

where u,v ∈M. Note that, d∗(u,v) is the acute angle between u and v. With this distance metric,

one can define dissimilarity matrix for a set of directions and make use of a generic clustering

algorithm. Our choice is the Partition Around Medoids (PAM) (Kaufman and Rousseeuw, 1990)

due to its simplicity. The detailed procedure is described in Algorithm S1 below, where the input

vectors are the selected directions. Due to the sparsity of β̂j ’s and efficient algorithms of PAM,

this clustering strategy is practically fast. Let m̌1, . . . , m̌I be the resulting group (Karcher) means.

They are used as the starting value for gradient-based methods, such as L-BFGS-B algorithm (Byrd

et al., 1995), for obtaining γ̂(I), the ML estimate of γ under model (2) with I tensor components.
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More specifically, the starting value is set as ((1/I, α̃, m̌⊺
1), . . . , (1/I, α̃, m̌

⊺
I))

⊺.

S1.3 Estimation of the linear model (S2)

This section describes a fast algorithm that we developed for estimating β̂j in model (S2). With

this model one can write the log-likelihood of β = (β1, . . . , βK)⊺ as

ℓ(β) =
m∑
i=1

[
log
( yi
σ2

)
−
y2i + (

∑K
k=1 βkxik)

2

2σ2
+ log I0

{
yi(
∑K

k=1 βkxik)

σ2

}]
,

where yi = S(ui) and xik = xk(ui) for i = 1, . . . ,m, k = 1, . . . ,K. And now we consider minimizing

−ℓ(β) subject to βk ≥ 0 ∀k (S4)

with respect to β. Now, differentiating ℓ with respect to βj , we have

∂ℓ

∂βj
=

m∑
i=1

{
−
(
∑K

k=1 βkxik)xij
σ2

+
yixij
σ2

ti(β)

}
,

where

ti(β) = I1

{
yi(
∑K

k=1 βkxik)

σ2

}/
I0

{
yi(
∑K

k=1 βkxik)

σ2

}

with

Iv(x) =
1

π

∫ π

0
exp(x cosϕ) cos(vϕ)dϕ

as the v-th (for nonnegative integer v) order modified Bessel function of the first kind (Abramowitz

and Stegun, 1964). One can show that the solution β̂ of minimizing (S4) satisfies

β̂j =

∑m
i=1

{
ti(β̂)yi −

∑
k ̸=j β̂kxik

}
xij∑m

i=1 x
2
ij


+

∀j. (S5)

If we know ti(β̂)’s, (S5) gives an update formula for one βk at a time, similarly as in common

coordinate descent algorithms. Since coordinate descent algorithm is of an iterative basis, we

propose to further approximate ti(β̂) by substituting the latest update of β into ti. This leads to

the following coordinate descent like strategy for finding β̂:

• Outer loop: Approximate r(β̂) using the latest update of β.

• Inner loop: Coordinate updates through (S5) until convergence.
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For inner loop, very often, many coefficients remain zero after thresholding, which leads to un-

changed of their values. Since the update of a particular coefficient depends on the partial sum of

other coefficients, the inner loop is usually computationally efficient and converges in a fast manner.

This algorithm requires an initial value of β. Motivated by the typical non-linear estimator of

a single fiber model, we can choose the initial value as a constrained least square estimator which

minimizes
m∑
i=1

(
yi −

K∑
k=1

βkxik

)2

subject to βk ≥ 0 ∀k.

Note that this is a quadratic programming problem, which can be solved efficiently by existing

algorithms.

S2 Simulation study of voxel-wise estimation

This section provides simulation results for the voxel-wise estimation procedure proposed in Sec-

tion 3. Observed signal intensities were simulated from model (1) with Rician noise under three

settings:

1. Single tensor case: J = 1, m1 = (1, 0, 0)⊺.

2. Two tensor case with perpendicular crossing and unbalanced components: J = 2, m1 =

(1, 0, 0)⊺, m2 = (0, 1, 0)⊺, p1 = 0.7, p2 = 0.3.

3. Two tensor case with 50 degree crossing and balanced components: J = 2,m1 = (cos(π/9), sin(π/9), 0)⊺,

m2 = (sin(π/9), cos(π/9), 0)⊺, p1 = 0.5, p2 = 0.5.

All FAs and largest eigenvalues of underlying tensors are set to 0.9 and 4 × 10−3 respectively.

Moreover, b, S0 and σ are set to 1000, 1000 and 50 respectively. This has a signal-to-noise ratio

(SNR := S0/σ) 20, which is typical for dMRI studies. U is obtained from the sphere tessellation

with 3 subdivision using octahedron and |U| = 33. For each setting, we simulate 200 voxel-wise

data sets and compare the following methods:

• golden: Optimization of (3) via Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with

starting values set as the true parameter values. (J is known.)

• global-aic: Global optimization of (3) via GENOUD (Sekhon and Mebane, 1998) with Akaike

Information criterion (AIC) for selection of J .
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• global-bic: Similar to global-aic but with BIC.

• prop-aic: Our proposed method with AIC.

• prop-bic: Our proposed method with BIC.

Note that the AIC is derived as

AIC(I) = −2l(γ̂(I)) + 8I.

The simulation results are summarized in Table S1. With the information of true parameters,

golden can be treated as a golden standard. Excluding golden, prop-bic has the highest proportion

of correct estimation of J and attains around 99% correct recovery, which leads to our choice of BIC

over AIC. In addition, note that prop-bic over-selects J when it does not estimate J correctly. This

is one of the reasons why a removal step (Step 12 of Algorithm S4) is designed in our smoothing

procedure. As said, our goal is the diffusion direction m. Conditional on the correct estimation of

J , the squared error of m is defined as

min
{k1,...,kJ∈{1,...,J}:ki ̸=kj}

J∑
j=1

d∗2(mj , ûkj ),

where û1, . . . , ûJ are the estimated diffusion directions. From Table S1 all methods have root MSEs

of m ranging from 1.5 to 1.6, 4.5 to 4.6 and 5.1 to 5.7 degree in the three settings respectively, and

so these methods do not have big difference in terms of tracking. Given the accurate estimation of

J and the computational benefit (over general global optimization methods), prop-bic performs the

best among the compared methods.

S3 Choice of bandwidth

This section presents our bandwidth selection methods for the smoothing method in Section 4.

These methods are based on the idea of cross-validation (CV). Let m̆−i
i be the smoothed version

of m̂i when all directions sharing the same voxel with m̂i are not used in the smoothing. Since the

choice of h may affect the number of clusters (steps 3 and 4 of Algorithm S4), m̂i may have been

removed (step 12 of Algorithm S4). Thus, m̆−i
i is not always defined. Let oi be the indicator of

the existence of m̆−i
i . The CV score is the mean of {d∗2(m̂i, m̆

−i
i ) : oi = 1}.

Even after direction smoothing, the number of diffusion directions within a voxel may still be

over-estimated. These spurious directions can have a great effect on the CV score, similar to the

effect of outliers.
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Table S1: Simulation results for voxel-wise estimation. Correct-select: proportion of Ĵ = J .

Over-select: proportion of Ĵ >= J . m, α, τ : MSE of m, α and τ (computed on Ĵ = J), with

corresponding standard error stated in brackets. Note that the MSE of m is in squared degree.

Setting Method Correct-select Over-select m α τ

1 golden 100% 100% 2.48 (3.06e-03) 5.70e-02 (4.66e-03) 2.69e-04 (2.32e-05)

global-aic 75% 100% 2.39 (3.32e-03) 5.50e-02 (5.40e-03) 2.65e-04 (2.40e-05)

global-bic 98% 100% 2.48 (3.11e-03) 5.65e-02 (4.70e-03) 2.67e-04 (2.33e-05)

prop-aic 89% 100% 2.41 (3.07e-03) 5.53e-02 (5.01e-03) 2.73e-04 (2.51e-05)

prop-bic 99.5% 100% 2.48 (3.07e-03) 5.65e-02 (4.65e-03) 2.69e-04 (2.33e-05)

2 golden 100% 100% 20.5 (1.99e-02) 1.23 (2.83e-01) 4.01e-04 (2.81e-05)

global-aic 81.5% 100% 21.0 (2.19e-02) 1.20 (3.40e-01) 3.93e-04 (2.97e-05)

global-bic 97% 100% 21.3 (2.07e-02) 1.92 (7.46e-01) 4.05e-04 (2.88e-05)

prop-aic 91.5% 100% 21.1 (2.13e-02) 1.37 (3.43e-01) 4.10e-04 (2.93e-05)

prop-bic 99.5% 100% 20.7 (2.01e-02) 1.33 (3.16e-01) 4.00e-04 (2.81e-05)

3 golden 100% 100% 28.7 (3.85e-02) 5.21 (3.24) 2.72e-03 (2.61e-04)

global-aic 74.5% 100% 26.5 (3.80e-02) 2.02 (4.21e-01) 2.51e-03 (2.92e-04)

global-bic 95.5% 100% 32.3 (7.20e-02) 3.38 (1.04) 2.95e-03 (3.47e-04)

prop-aic 93.5% 100% 27.6 (3.83e-02) 5.37 (3.46) 2.60e-03 (2.65e-04)

prop-bic 99% 100% 28.6 (3.86e-02) 5.23 (3.27) 2.70e-03 (2.62e-04)

To alleviate this issue, the trimmed mean of {d∗2(m̂i, m̆
−i
i ) : oi = 1} and the median of

{d∗(m̂i, m̆
−i
i ) : oi = 1} are used to form robust CV scores. They are called trimmed CV score

and Median CV score respectively. We choose h as the minimizer of either one of these scores. See

Section S6 for their numerical comparison.

In our numerical illustrations, the bandwidth h is chosen differently for single fiber regions

and crossing fiber regions. Further, if one has enough computational resource, adaptive choice of

bandwidth can also be achieved by dividing voxels into blocks according to their spatial locations

and performing cross validation.

S4 Algorithms

This section presents various algorithms developed in the main paper.
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Algorithm S1 ClustDir: PAM based clustering for direction vectors

Input: Set of direction vectors {v1, . . . ,vn}, number of cluster Nc

Output: Group mean {v∗
1, . . . ,v

∗
Nc
}, group label {e1, . . . , en}

1: procedure ClustDir({v1, . . . ,vn}, Nc)

2: for i, j = 1 to n do Dij ← d∗(vi,vj)

3: Define D as the dissimilarity matrix with elements Dij ’s

4: Apply PAM with dissimilarity matrix D to cluster {v1, . . . ,vn} into Nc groups

5: for i = 1 to n do ei ← group label of vi

6: for j = 1 to Nc do Compute group (Karcher) means:

v∗j ← arg min
v∈M

n∑
i=1

I{ei = j}d∗2(vi,v)

7: return ({v∗
1, . . . ,v

∗
Nc
}, {e1, . . . , en})

Algorithm S2 Algorithm for voxel-wise estimation

Input: Observed signal intensities {S(u),u ∈ U}, set of gradient vectors U , non-diffusion weighted

intensity S0, standard deviation of the noise σ, b-value b, FA threshold r, upper bound of the

number of directions Ĩ

Output: The selected number of diffusion directions, Ĵ and, if Ĵ > 0, the corresponding ML

estimate γ(Ĵ)

Description: To perform voxel-wise estimation

1: Compute FA

2: if FA < r then

3: Declare there is no major diffusion direction: Ĵ ← 0

4: else

5: Estimate β (Appendix S1.3) and determine the selected directions.

6: for I = 1, . . . ,min{Ĩ , L} do
7: Cluster the selected directions into I groups (Algorithm S1)

8: Perform optimization with a gradient method (Section 3.3) and obtain ML estimate γ̂(I)

9: Compute BIC(I)

10: Compute BIC(0)

11: Estimate the number of diffusion directions: Ĵ ← argminI∈{0,...,min{Ĩ,L}}BIC(I)
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Algorithm S3 ClustDirN: PAM based clustering algorithm for direction vectors with automatic

choice of number of clusters
Input: Set of direction vector {v1, . . . ,vn}, maximum number of cluster K, angular threshold ξ

Output: Group mean {v∗
1, . . . ,v

∗
C}, number of clusters C

1: procedure ClustDirN({v1, . . . ,vn}, K, ξ)

2: if n = 1 then

the case of only one input direction: declare only one cluster

3: C ← 1

4: else if n = 2 then

the case of two input directions: declare only one cluster if the angular separation of

these directions are small

5: if d∗(v1,v2) ≤ ξ then C ← 1 else C ← 2

6: else if n = 3 then

the case of three input directions

7: ψ ← the distance (S3) between the two cluster means of ClustDir({v1,v2,v3}, 2)

(Algorithm S1)

8: if ψ ≤ ξ then

9: C ← 1

10: else

11: if minimum pairwise distance of {v1,v2,v3} ≤ ξ then C ← 2 else C ← 3

12: else

the case of more than three input directions: use Shilhouette criterion

13: ψ ← distance between the two cluster means of ClustDir({v1, . . . ,vn}, 2)
14: if ψ ≤ ξ then

15: Claim there is only one cluster if the angular separation is small: C ← 1

16: else

17: for k = 2 to K do

18: ak ← average silhouette computed using ClustDir({v1, . . . ,vn}, k)

19: Estimate the number of clusters as the maximizer of average silhouette: C ←
arg minj{aj}

20: ({v∗
1, . . . ,v

∗
C}, {e1, . . . , en})← ClustDir({v1, . . . ,vn}, C)

21: return ({v∗
1, . . . ,v

∗
C}, C)
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Algorithm S4 Algorithm for direction smoothing

Input: Target voxel s∗, voxel-wise estimate {(sk, m̂k), k = 1, . . . , T}, estimated number of fibers

{Ĵ(s) : s ∈ S}, kernel function K, bandwidth matrix H, threshold c, maximum number of cluster

(Algorithm S3) K, angular threshold (Algorithm S3) ξ

Output: Updated number of directions and updated directions at s∗

Description: To perform smoothing for diffusion directions at s∗

1: for k = 1 to T do Compute spatial weight: wk ← KH(sk − s∗)

2: for k = 1 to T do Standardize spatial weights: wk ← wk/
∑T

j=1wj

3: Sort wk’s in decreasing order such that wl1 ≥ · · · ≥ wlT

4: Identify neighborhood for clustering (Section 4.2):

Compute L← minM∈{1,...,T} 1{
∑T

m=M+1wlm ≤ c} (The summation
∑T

m=T+1wlm is defined as

0.)

5: Clustering via Algorithm S3: ({u1, . . . ,uC}, C)←ClustDirN({m̂l1 , . . . , m̂lL}, K, ξ)

6: if C ≥ Ĵ(s∗) then
7: Match the smoothed directions, {u1, . . . , uC}, to the voxel-wise estimates at s∗,

{m̂1(s
∗), . . . , m̂Ĵ(s∗)(s

∗)} :

(
k̂1, . . . , k̂Ĵ(s∗)

)
← arg min

{k1...,kĴ(s∗)∈{1,...,C}:ki ̸=kj}

Ĵ(s∗)∑
j=1

d∗(m̂j(s
∗),ukj )

8: for j = 1 to Ĵ(s∗) do m̂j(s
∗)← uk̂j

9: else

10: Match the voxelwise estimates at s∗ to the smoothed directions: :(
k̂1, . . . , k̂C

)
← arg min

{k1...,kC∈{1,...,Ĵ(s∗)}:ki ̸=kj}

C∑
j=1

d∗(m̂kj (s
∗),uj)

11: for j = 1 to C do m̂k̂j
(s∗)← uj

12: Ĵ(s∗)← C and remove non-updated m̂j(s
∗)’s
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Algorithm S5 Algorithm for fiber tracking

Input: Target voxel s∗, initial direction v∗, (smoothed) voxel-wise estimate {(sk, v̂k), k = 1, . . . , T},
maximum number of projection Nproj , angular threshold ξ

Output: Recorded locations and directions

Description: To perform fiber tracking

1: Initialization: x← s∗; v← v∗; Z ← True

Here, x represents the current location, v represents the current direction, Z is an indicator of

whether the tracking should continue

2: Record x,v

3: while Z do

4: Move from x in the direction of v until hitting the boundary of the voxel

5: x← boundary point of the voxel

6: K ← number of fiber directions at the next voxel

7: if K = 0 then

8: Z̃ ← False, where Z̃ is an indicator of whether a viable direction exists

9: else

10: {v1, . . . ,vK} ← fiber directions at the next voxel

11: Identify the direction with smallest angular separation: j ← arg mink d
∗(v,vk)

12: if d∗(v,vj) ≤ ξ then

13: v← sign(v · vj)vj ; Z̃ ← True

14: else

15: Z̃ ← False

16: if not Z̃ then

Project the tracking and check if there is any viable direction after Nproj voxels:

17: x̃← x; ṽ← v

18: for n = 1 to Nproj do

19: Projection: run lines 4 to 15 with all x and v replaced by x̃ and ṽ

20: if Z̃ then

21: Record x̃ and ṽ; break

22: if not Z̃ then Z ← False (Stop the tracking if there is no viable direction after Nproj

voxels)

23: else

24: Record x,v

S5 Proofs and Technical details

S5.1 Proof of Theorem 1

To prove Theorem 1, it suffices to prove the following proposition.
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Proposition 1. Let f(u) =
∑p

j=1 cje
−aj(m

⊺
ju)

2

, u ∈ V, be a spherical function, where cj ∈

R, aj > 0, mj ∈ V for j = 1, · · · , p and mj ̸= ±mi for 1 ≤ i ̸= j ≤ p. Then if f(u) = 0 for all

u ∈ V, we have cj = 0 for j = 1, . . . , p.

This proposition says that, fj(u) := e−aj(m
⊺
ju)

2

, j = 1, . . . , p, are linearly independent spherical

functions.

Proof. We first consider the spherical Laplacian operator ∆V . It can be shown that, if f =

f(x1, x2, x3), x21 + x22 + x23 = 1, is a spherical function only depending on x3, then

∆Vf =
∂
(
(1− x23)

∂f
∂x3

)
∂x3

.

Particularly, applying ∆V on the function e−ax2
, |x| ≤ 1, we get

∆V

(
e−ax2

)
= P1(x; a)e

−ax2
,

where P1(x; a) is a 4th order polynomial in x with the leading term being −(2a)2x4. Successively

applying ∆V l times, by induction, we get

∆l
V

(
e−ax2

)
= Pl(x; a)e

−ax2
, l ≥ 0,

where Pl(x; a) is a 4lth polynomial in x with the leading term being (−1)l(2a)2lx4l.

Now applying ∆l
V to fj(u) := e−aj(m

⊺
ju)

2

, u ∈ V. Since the spherical Laplacian operator ∆V

is invariant to orthogonal transformations, so

∆l
Vfj = ∆l

V

(
e−ajx

2
)
, x = m⊺

ju

= Pl(x; aj)e
−ajx

2
= Pl(m

⊺
ju; aj)fj , l ≥ 0.

If f =
∑p

j=1 cjfj ≡ 0 on V, then for l ≥ 0

∆l
Vf =

p∑
j=1

cj∆
l
Vfj

=

p∑
j=1

cjPl(m
⊺
ju; aj)e

−aj(m
⊺
ju)

2

≡ 0, u ∈ V.

Consider the p by p matrix function:

P̃(u) =
(
Pl(m

⊺
ju; aj)e

−aj(m
⊺
ju)

2
)j=1,...,p

l=0,...,p−1
, u ∈ V.
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In order to show cj = 0 for j = 1, . . . , p, we only need to show that there exists u∗ ∈ V such

that det(P̃(u∗)) ̸= 0. Note that, e−aj(m
⊺
ju)

2

does not depend on l and is everywhere nonzero, so

det(P̃(u∗)) ̸= 0 if and only if det(P(u∗)) ̸= 0 where

P(u) =
(
Pl(m

⊺
ju; aj)

)j=1,...,p

l=0,...,p−1
, u ∈ V. (S6)

This is shown in the following lemma and it completes the proof of the proposition.

Lemma 1. There exists u∗ ∈ V such that det(P(u∗)) ̸= 0 for P defined in equation (S6) with

aj > 0, mj ∈ V for j = 1, . . . , p and mj ̸= ±mi for 1 ≤ i ̸= j ≤ p.

Proof. For any u,v ∈ V such that u⊺v = 0, consider the curve on V:

u(t) = u cos t+ v sin t =
1

2
(u− iv)w +

1

2
(u+ iv)w̄, w = eit = cos t+ i sin t.

As w̄ = 1/w, Pl(m
⊺
ju(t); aj) is a Laurent polynomial in w with leading terms being λj(u,v)

lw4l

and λ′j(u,v)
lw−4l, where

λj(u,v) = −4a2j
(
1

2
m⊺

j (u− iv)
)4

, j = 1, . . . , p, (S7)

λ′j(u,v) = −4a2j
(
1

2
m⊺

j (u+ iv)

)4

, j = 1, . . . , p.

Therefore, w2p(p−1)det(Pl(m
⊺
ju(t); aj)) is a 4p(p− 1) order polynomial in w with the leading term

being w2p(p−1)det(λj(u,v)
lw4l) which is nonzero if and only if det(λj(u,v)

l) is nonzero (since w ̸=

0).

Note

det(λj(u,v)
l) =

∏
k<j

(λj(u,v)− λk(u,v)).

By Lemma 2 (the following lemma), there exists u0,v0 ∈ V, (u0)⊺v0 = 0 such that: λj(u
0,v0)

are all distinct for j = 1, . . . , p. Therefore, w2p(1−p)det(Pl(m
⊺
ju

0(t); aj)) has a nonzero coefficient

for the 4p(p − 1) (highest order) term and thus is not constantly zero. Therefore, there exists t∗

such that det(Pl(m
⊺
ju

0(t∗); aj)) ̸= 0.

Now let u∗ = u0 cos t∗ + v0 sin t∗, then we prove the lemma.

Lemma 2. If aj > 0 and mj ̸= ±mi for 1 ≤ i ̸= j ≤ p, then there exists u0,v0 ∈ V, (u0)⊺v0 = 0

such that: λj(u
0,v0) defined by equation (S7) are all distinct for j = 1, . . . , p.

13



Proof. If the result does not hold, then there exists 1 ≤ j ̸= k ≤ p such that

aj

(
m⊺

j (u− iv)
)2

= ak
(
m⊺

k(u− iv)
)2

holds for at least three pairs of u,v ∈ V,u⊺v = 0 where the three u are linearly independent.

Therefore
√
ajm

⊺
ju = ±

√
akm

⊺
ku

for at least three u on V which are linearly independent. Therefore

√
ajmj = ±

√
akmk.

Since mj ,mk ∈ V and aj , ak > 0, this means

aj = ak, mj = ±mk,

which is a contradiction.

S5.2 Proof and technical details of Theorem 2

We need the following assumptions for Theorem 2. Write Bδ(θ0) = {θ ∈ R2 : ∥θ − θ0∥ < δ}, for

δ > 0. Throughout our discussion, we use the L2-norm for matrix.

Assumption 1. There exists ϵ > 0 such that supp(v1|S1 = s) ⊆ {v ∈ M : d∗(v,v0) ≤ π/2 − ϵ},

in a neighborhood of s0.

Assumption 2. h→ 0 and nh→∞.

Assumption 3. K(·) is bounded, compactly supported kernel function satisfying (i)
∫
K(x)dx = 1

and (ii)
∫
xK(x)dx = 0.

Assumption 4. The density of S, fS(·), is twice continuously differentiable in a neighborhood of

s0 and fS(s0) > 0.

Assumption 5. mj(·) is twice continuously differentiable in a neighborhood of s0, for j = 1, 2.

Assumption 6. Σjk(·) is continuous in a neighborhood of s0, for j, k = 1, 2.

Assumption 7. Ψjk(·) is continuous in a neighborhood of s0, for j, k = 1, 2.

Assumption 8. E{[ψ2(θ1,θ0)]
2
j,k|S1 = s} ≤ Cjk for all s, for j, k = 1, 2.

14



Assumption 9. Let γ(δ, s) = E[supθ̃∈Bδ(θ0)
∥ψ2(θ1, θ̃)−ψ2(θ1,θ0)∥|S1 = s]. There exists a neigh-

borhood of s0, W(s0), such that

γ̃(δ) = sup
s∈W(s0)

γ(δ, s) = o(1) as δ → 0.

Assumption 10. Ψ(s0) is positive definite.

Assumption 1 is a technical assumption for avoiding the unnecessary complication arising from

the representation of geodesic distance as a function of the working coordinate system. As a

result of Assumption 1, one can use a representation of ±v, which aligns with v0, and reduces the

geodesic distance ofM to the geodesic distance of V. This assumption is usually satisfied by our

procedure, as a results of thresholding and clustering. Assumptions 2–8 are standard conditions

for consistency and distributional limits for smoothing estimators. Assumption 9 states that the

local modulus of continuity of the Hessian of the discrepancy measure (d2(ω,θ)) between the

principal diffusion directions converges to zero, uniformly over the locations. Thus, this condition

imposes a minimal degree of smoothness of the Hessian of the discrepancy measure, which is needed

to ensure negligibility of higher order terms in a second order Taylor expansion of the objective

function around the true diffusion direction at any given location, and is used in proving Lemma 7.

Assumption 10 is also a standard requirement to ensure identifiability of the true diffusion direction

at s0.

Lemma 3. Assume that Assumption 1 hold. ψ(ω,θ) is twice continuously differentiable in a

neighborhood of θ0 = 0, m(s0) = 0 and M
(1)
n (0) = −2

∑n
i=1 hKh(Si − s0)θi .

Proof of Lemma 3. Under Assumption 1, for θ close to θ0,

d(θi,θ) = arccos(|ρv0(vi)
⊺ϕ−1(θ)|) = arccos(ρv0(vi)

⊺ϕ−1(θ)).

Note that ρv0(vi) ∈ V is represented by θi. Thus, for θ close to θ0, d(θi,θ) coincides with the

geodesic distance of V between points represented by logarithm coordinates θi and θ. Now, Lemma

3 follows from Bhattacharya and Bhattacharya (2012, Theorem 5.3) applied to the Manifold V. Note

that the cited theorem develops the coordinate system through the logarithm map at the intrinsic

mean, which is not the same in our case. However, the requirement for developing the system at

the intrinsic mean is for deeper results stated in their theorem, which is irrelevant to our use of

their theorem.
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Lemma 4. Assume that Assumptions 1-5 hold. Let Yi = hKh(Si − s0)m(Si), for i = 1, . . . n.

Then
n∑

i=1

Yi = nh3
∫
x2K(x)dx

{
m(1)(s0)f

(1)(s0) +
1

2
m(2)(s0)fS(s0)

}
+Op(

√
nh3),

where m(1) and m(2) are interpreted as vectors of first and second derivatives of elements of m

respectively.

Proof of Lemma 4. Since Yi’s are independently and identically distributed, we have

n∑
i=1

Yi = nE(Y1) +Op

{√
nE(Y2

1)

}
.

We compute E(Y1) and E(Y2
1) below. Write Y1 = (Y1,1, Y1,2)

⊺. For j = 1, 2, by dominated

convergence theorem with boundedness and continuity assumptions of fS and mj , and m(s0) = 0,

from Lemma 3, we have

E(Y1,j) = E {hKh(S1 − s0)mj(S1)}

= h

∫
Kh(s− s0)m(s)fS(s)ds

= h

∫
K(x)mj(s0 + hx)fS(s0 + hx)dx

= h

∫
K(x)

{
m

(1)
j (s0)hx+

1

2
m

(2)
j (s0)h

2x2
}

×
{
fS(s0) + f

(1)
S (s0)hx+

1

2
f
(2)
S (s0)h

2x2
}
dx+ o(h3)

= h3
∫
x2K(x)dx

{
m

(1)
j (s0)f

(1)
S (s0) +

1

2
m

(2)
j (s0)fS(s0)

}
+ o(h3).

Similarly, for j = 1, 2,

E(Y2
1) = E

{
h2K2

h(S1 − s0)m2
j (Si)

}
= h3

∫
x2K2(x)dx{m(2)

j (s0)}2fS(s0) + o(h3).

Thus,

n∑
i=1

Yi = nh3
∫
x2K(x)dx

{
m(1)(s0)f

(1)
S (s0) +

1

2
m(2)(s0)fS(s0)

}
+Op(

√
nh3).

Lemma 5. Assume that Assumptions 1-4 and 6 hold. Let Ỹi = hKh(Si − s0)(θi − m(Si)), for

i = 1, . . . n. Then
1√
nh

n∑
i=1

Ỹi =⇒ N2

(
0,

∫
K2(x)dxfS(s0)Σ(s0)

)
.
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Proof of Lemma 5. We will use the Linderberg-Feller central limit theorem for showing the asymp-

totic normality of
∑n

i=1 Ỹi/
√
nh. First, it is trivial that, for fixed n, Ỹi’s are independently and

identically distributed, with E(Ỹ1) = 0. Next, we study the variance of
∑n

i=1 Ỹi/
√
nh, which is

E(Y1Y
⊺
1)/h. Now, write Y1 = (Y1,1, Y1,2)

⊺. For j, k = 1, 2,

1

h
E(Y1,jY1,k) = h

∫
K2

h(s− s0)E [{θ1,j −mj(s1)} {θ1,k −mk(s1)} |S1 = s] fS(s)ds

= h

∫
K2

h(s− s0)Σjk(s)fS(s)ds

=

∫
K2(x)f(s0 + hx)Σjk(s0 + hx)dx

=

∫
K2(x)dxf(s0)Σjk(s0) + o(1),

by dominated convergence theorem with boundedness and continuity assumptions of fS and Σjk.

And, next, we have to verify the Linderberg-Feller condition. In our case, it can be reformulated

as, for any ε > 0,

lim
n→∞

n∑
i=1

E

∥∥∥∥∥ Ỹi√
nh

∥∥∥∥∥
2

I

{∥∥∥∥∥ Ỹi√
nh

∥∥∥∥∥ > ε

} = 0.

We verify this condition by showing limn→∞ Pr(∥Ỹ1/
√
nh∥ > ε) = 0, for any ε > 0. This is

equivalent to ∥Ỹ1/
√
nh∥ = op(1), which we verify by looking at the second moment of ∥Ỹ1/

√
nh∥.

E

∥∥∥∥∥ Ỹ1√
nh

∥∥∥∥∥
2
 =

1

nh
E
{
h2K2

h(S1 − s0)∥θ1 −m(S1)∥2
}

=
h

n

∫
K2

h(s− s0)E(∥θ1 −m(S1)∥2|S1 = s)fS(s)ds

=
h

n

∫
K2

h(s− s0)E(trace [{θ1 −m(S1)}{θ1 −m(S1)}⊺] |S1 = s)fS(s)ds

=
h

n

∫
K2

h(s− s0)trace {Σ(s)} fS(s)ds

=
1

n

∫
K(x)trace {Σ(s0 + hx)} fS(s0 + hx)dx

=
1

n
[{Σ11(s0) + Σ22(s0)} fS(s0) + o(1)] .

Thus, ∥Ỹ1/
√
nh∥ = op(1) and by continuous mapping theorem, ∥Ỹ1/

√
nh∥2 = op(1).

n∑
i=1

E

∥∥∥∥∥ Ỹi√
nh

∥∥∥∥∥
2

I

{∥∥∥∥∥ Ỹi√
nh

∥∥∥∥∥ > ε

} = E

n ∥∥∥∥∥ Ỹ1√
nh

∥∥∥∥∥
2

I

{∥∥∥∥∥ Ỹ1√
nh

∥∥∥∥∥ > ε

}
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Call the term inside the expectation of the right hand side as Zn. From above, E(n∥Ỹ1/
√
nh∥2) <

∞, for sufficiently large n. Note that Zn ≤ n∥Ỹ1/
√
nh∥2. Thus, by dominated convergence theorem

with application of Skorohod Representation Theorem to extend the result to weakly convergent

sequence of random variables, we have limn→∞ E(n∥Ỹ1/
√
nh∥2) = 0 and thus Linderberg-Feller

condition is verified. Hence, by Linderberg-Feller central limit theorem, we have

1√
nh

n∑
i=1

Ỹi =⇒ N2

(
0,

∫
K2(x)dxfS(s0)Σ(s0)

)
.

Lemma 6. Assume that Assumption 1-4, 7 and 8 hold.

M (2)
n (θ0) = nhΨ(s0)fS(s0){1 + op(1)}

Proof of Lemma 6. Note thatM
(2)
n (θ0) =

∑n
i=1 hKh(Si−s0)ψ2(θi,θ0). To understand the asymp-

totic behavior of M
(2)
n (θ0), we study the asymptotic expansion of hKh(S1 − s0)ψ2(θi,θ0) through

computing its first two moments.

For j, k = 1, 2,

E {hKh(S1 − s0)[ψ2(θ1,θ0))]j,k} =
∫
hKh(s− s0)Ψjk(s)fS(s)ds = h {Ψjk(s0)fS(s0) + o(1)} ,

by dominated convergence theorem with boundedness and continuity assumptions of fS and Ψjk.

As the second moment, since E{[ψ2(θ1,θ0)]
2
j,k|S1 = s} is bounded,

E
{
h2K2

h(S1 − s0)[ψ2(θ1,θ0))]
2
j,k

}
≤ Cjk

∫
h2K2

h(s− s0)fS(s)ds = h

{
CjkfS(s0)

∫
K2(x)dx+ o(1)

}
by dominated convergence theorem with boundedness and continuity of fS . Thus,

M (2)
n (θ0) = nhΨ(s0)fS(s0){1 + op(1)}.

Lemma 7. Assume that Assumptions 1-4 and 7-10 hold. Let θ ∈ R2. For all sufficiently small

δ > 0,

lim
n→∞

Pr

[
inf

θ̃∈Bδ(θ0)

1

nh

{
(θ − θ0)⊺M (2)

n (θ̃)(θ − θ0)
}
≥ 1

2
fS(s0)(θ − θ0)⊺Ψ(s0)(θ − θ0)

]
= 1.
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Proof of Lemma 7. In this proof, we will prepare the uniform result that is required to show con-

sistency of our estimator. Write Tn(θ̃) = (1/n)
∑n

i=1Kh(Si − s0)
{
ψ2(θi, θ̃)−ψ2(θi,θ0)

}
. Note

that

sup
θ̃∈Bδ(θ0)

∥Tn(θ̃)∥ ≤
1

n

n∑
i=1

{
Kh(Si − s0) sup

θ̃∈Bδ(θ0)

∥∥∥ψ2(θi, θ̃)−ψ2(θi,θ0)
∥∥∥} .

By dominated convergence theorem and Assumption 9, we have

E

(
sup

θ̃∈Bδ(θ0)

∥Tn(θ̃)∥

)
≤
∫
Kh(s− s0)γ(δ, s)fS(s)ds

=

∫
K(x)γ(δ, s0 + hx)fS(s0 + hx)dx

≤ γ̃(δ)f(s0) + o(1).

By Assumption 9, we have limδ→0 limsupn→∞[supθ̃∈B(θ0) ∥Tn(θ̃)∥] = 0 in probability. For a given

θ ∈ R2, note that

sup
θ̃∈Bδ(θ0)

∣∣∣(θ − θ0)⊺Tn(θ̃)(θ − θ0)
∣∣∣ ≤ ( sup

θ̃∈Bδ(θ0)

∥Tn(θ̃)∥

)2

∥θ − θ0∥2.

Thus, by Lemma 6 and Assumption 10, for all sufficiently small δ > 0,

lim
n→∞

Pr

[
inf

θ̃∈Bδ(θ0)

1

nh

{
(θ − θ0)⊺M (2)

n (θ̃)(θ − θ0)
}
≥ 1

2
fS(s0)(θ − θ0)⊺Ψ(s0)(θ − θ0)

]
= 1.

Proof of Theorem 2(a). To show the consistency result, we look into the Taylor’s expansion of

Mn(θ) around θ0. Consider θ ∈ Bδ(θ0) and by Taylor’s expansion, we have

Mn(θ)−Mn(θ0) =M (1)
n (θ0)

⊺(θ − θ0) +
1

2
(θ − θ0)⊺M (2)

n (θ∗)(θ − θ0),

where θ∗ lies on the line segment joining θ0 and θ. First, by Lemma 4 and 5,

1

nh
M (1)

n (θ0) = −
2

nh

n∑
i=1

(
Yi + Ỹi

)
= op(1).

Then, from Lemma 7, we have, for all sufficiently small δ > 0,

lim
n→∞

Pr

[
inf

θ∗∈Bδ(θ0)

1

nh

{
(θ − θ0)⊺M (2)

n (θ∗)(θ − θ0)
}
≥ 1

2
fS(s0)(θ − θ0)⊺Ψ(s0)(θ − θ0)

]
= 1.

Thus, by Assumption 10, there exists a local minimum in Bδ(θ0) asymptotically. That means, for

any δ > 0, there exists a sequence of roots, θ̂n, to M
(1)
n (θ) = 0 such that,

lim
n→∞

Pr(∥θ̂n − θ0∥ < δ) = 1.

This completes the proof of Theorem 2(a).
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Proof of Theorem 2(b). To show the distributional result, we expand M
(1)
n (θ) by Taylor’s expan-

sion. Expanding at θ̂n, stated in Theorem 2(b),

0 =M (1)
n (θ̂n) =M (1)

n (θ0) +M (2)
n (θ∗n)(θ̂n − θ0),

where θ∗n lies on the line segment joining θ0 and θ̂n. Note that ∥θ∗n − θ0∥ ≤ ∥θ̂n − θ0∥ = op(1).

And
1

nh
M (2)

n (θ∗n) = fS(s0)Ψ(s0){1 + op(1)}

since, with ∥θ∗n − θ0∥ = op(1), one can show that E{Tn(θ
∗
n)} = op(1) along the proof of Lemma 7.

As for M
(1)
n (θ0), by Lemma 4,

1√
nh
M (1)

n (θ0) = (−2)
√
nh5

∫
x2K(x)dx

{
m(1)(s0)f

(1)(s0) +
1

2
m(2)(s0)fS(s0)

}
+ (−2) 1√

nh

n∑
i=1

Ỹi + op(1)

Thus, by Slutsky’s theorem,

√
nh
{
(θ̂n − θ0)− h2η

}
=⇒ N2(0,Ω).

S6 Simulation study

This section presents simulation results of the proposed DiST procedure.

We simulate 200 diffusion tensor data sets from the tensor field displayed in Figure S2 (Left).

The tensors all have the principal eigenvalues being 4× 10−3 and FA (5) being 0.9. The b-value is

set to be 1000 across all voxels. This mimics the b-value and diffusivity (reflected by the numerical

scale of the tensor) in real dMRI studies.

At each voxel there is either one tensor or there are two tensors. For crossing fiber regions, p1

and p2 are set to 0.7 and 0.3 respectively, and the separation angles between the two tensors range

from 66.3 to 86.6 degree. In crossing fiber regions of Figure S2 (Left), the more transparent the

tensor is, the less weight it takes.

In addition, S0(s)’s have the same value which is set to 1000. Two choices of the noise standard

deviation σ are used, namely 50 and 100, which corresponds to signal-to-noise ratio (S0/σ) of 20

and 10, respectively. The case that SNR = 20 is typical for dMRI studies while that of SNR = 10
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corresponds to a high noise setting. The set of gradient directions U is obtained from the sphere

tessellation with 3 subdivision using octahedron and |U| = 33, which is within a typical range for

dMRI studies nowadays. With these gradient directions, the observed signal intensities S(s)’s are

simulated according to the multi-tensor model (1) with the Rician noise. A total of four different

procedures are compared:

• raw: voxel-wise estimation without any smoothing;

• DiST-cv: DiST with h chosen by ordinary cross-validation score;

• DiST-tcv: DiST with h chosen by 5% trimmed cross-validation score;

• DiST-mcv: DiST with h chosen by median cross-validation score.

See Section S3 of the Supplemental Material for definitions of the various cross-validation variants.

Table S2 shows numerical summaries of the simulation results. In addition to the proportion of

correctly estimated number of diffusion directions, we also report the average MSE (AMSE) and

the average root MSE (ARMSE), defined as follows. Conditional on the correct estimation of J ,

the squared error of m is defined as

min
{k1,...,kJ∈{1,...,J}:ki ̸=kj}

J∑
j=1

d∗2(mj , ûkj ), (S8)

where û1, . . . , ûJ are the estimated diffusion directions. The minimization is taken in (S8) due to

the ambiguity in direction estimator assignemnts to the true directions. Here, the MSE is the mean

of squared errors (S8) over voxels with Ĵ = J in one simulated data set and root MSE (RMSE)

is the square root of MSE. Then AMSE and ARMSE are defined, respectively, as the averages of

MSEs and RMSEs over the 200 simulated data sets.

The voxel-wise estimation (i.e. raw) works reasonably well in estimating both the number of

diffusion directions J and the diffusion directions. Even for the low SNR setting, the correctness

of estimation of J is around 75% and the angular error is no more than 11 degree for the crossing

fiber region (J = 2). Moreover, smoothing substantially improves the raw results. Specifically,

for the single tensor region (J = 1), smoothing improves upon estimation of both J and diffusion

directions. For regions with two tensors (J = 2), smoothing only improves direction estimation.

Among the three smoothing procedures, DiST-mcv works the best.

Table S3 shows the five-number summary of the maximum angular error with Ĵ = J = 2

across the 200 simulated data sets. Again smoothing procedures have smaller errors than the raw
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procedure and DiST-mcv is the best among all methods. For DiST-mcv, the mean and median

of maximum angular errors are around 2.5 degree and 1 degree for SNR = 10 and SNR = 20,

respectively. Such magnitude of errors has little impact on tracking.

We then apply the proposed tracking algorithm in Section 5 (Algorithm S5, Supplemental

Material) to the estimated diffusion directions based on the raw and DiST-mcv. The tracking

results of a simulation with SNR = 10 are shown in Figures S2 (Right) and S3. As can be seen

in Figure S3, the lines produced by DiST are much more aligned when compared to the tracking

result based on voxel-wise estimation without smoothing (raw).

Table S2: Diffusion direction estimation results. Correct-select: proportion of Ĵ = J . AMSE:

average of MSEs (Each MSE is computed over voxels with Ĵ = J in one simulated data set.), in

squared degree, of the estimated diffusion direction, with the corresponding standard error stated

in brackets. ARMSE: average of RMSEs (Each RMSE is computed over voxels with Ĵ = J in

one simulated data set.), in degree, of the estimated diffusion direction, with the corresponding

standard error stated in brackets.

SNR J raw DiST-cv DiST-tcv DiST-mcv

10 1 Correct-select 97.12% 99.09% 99.15% 99.45%

AMSE 9.84 (3.84e-02) 4.95 (2.94e-01) 2.70 (1.09e-01) 3.06 (1.40e-01)

ARMSE 3.14 (6.12e-03) 2.09 (5.46e-02) 1.60 (2.60e-02) 1.69 (3.13e-02)

2 Correct-select 75.18% 74.38% 75.37% 75.44%

AMSE 114 (2.42) 50.9 (3.45) 40.0 (3.11) 9.81 (1.40)

ARMSE 10.6 (1.07e-01) 6.05 (2.68e-01) 5.26 (2.49e-01) 2.49 (1.35e-01)

20 1 Correct-select 98.59% 99.46% 99.69% 99.75%

AMSE 2.30 (8.50e-03) 1.25 (1.23e-01) 7.97e-01 (3.02e-02) 1.15 (5.47e-02)

ARMSE 1.52 (2.80e-03) 1.02 (3.28e-02) 8.79e-01 (1.10e-02) 1.03 (2.04e-02)

2 Correct-select 99.38% 99.94% 99.99% 99.99%

AMSE 19.8 (2.12e-01) 6.43 (5.18e-01) 2.00 (2.84e-01) 1.48 (2.13e-01)

ARMSE 4.43 (2.34e-02) 2.13 (9.75e-02) 1.13 (6.02e-02) 9.93e-01 (4.98e-02)

Table S3: Summary statistics of the maximum absolute error across the voxels with Ĵ = J = 2.

SNR Method Minimum 1st Quantile Median Mean 3rd Quantile Maximum

10 raw 0.530 6.63 9.86 11.8 14.6 89.3

DiST-cv 0.132 2.32 4.99 6.97 9.59 89.3

DiST-tcv 0.0933 2.08 4.01 6.00 8.07 89.3

DiST-mcv 0.135 1.35 2.11 2.91 3.35 65.1

20 raw 0.350 3.20 4.67 5.20 6.65 29.5

DiST-cv 0.0803 0.931 1.73 2.48 3.28 26.1

DiST-tcv 0.0494 0.613 0.965 1.33 1.53 15.7

DiST-mcv 0.0473 0.531 0.841 1.16 1.40 15.9
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Figure S2: Left: The true tensor field used in the simulation study (Section S6). Right: Illustration

of fiber tracking using DiST-mcv.

Figure S3: Illustration of fiber tracking over the crossing fiber region by raw (left) and DiST-mcv

(right) respectively.
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